Grids Theme Overview

GO-ESSP Workshop 2009 Max Planck Institut, Hamburg

V. Balaji

Princeton University

6 October 2009

- Examples of grids in use in ESMs
 - Horizontal coordinates
 - Vertical coordinates
- Why a grid standard?
 - Model makers
 - Model data users
- Gridspec tools
 - Grid creation
 - Analysis and Visualization
 - Regridding
- 4 New Directions

- Examples of grids in use in ESMs
 - Horizontal coordinates
 - Vertical coordinates
- Why a grid standard?
 - Model makers
 - Model data users
- Gridspec tools
 - Grid creation
 - Analysis and Visualization
 - Regridding
- Mew Directions

Horizontal grids in use in ESMs

Vertical coordinates

The taxonomy of vertical coordinates distinguishes mass-based and space-based vertical coordinates. There is often an attempt to do something in the spirit of geo-referencing: invoking a "standard" reference grid: usually based on pressure levels in the atmosphere, and depth in the ocean.

Balaji (NOAA/GFDL) Gridspec 6 October 2009

- Examples of grids in use in ESMs
 - Horizontal coordinates
 - Vertical coordinates
- Why a grid standard?
 - Model makers
 - Model data users
- Gridspec tools
 - Grid creation
 - Analysis and Visualization
 - Regridding
- Mew Directions

Earth system models are built from components

- Earth system models nowadays are built from components: subsystems that may be independently discretized.
- Even when all components are built by a cohesive community, the different components must have some conventions to share grid information.
- Furthermore, these days it is increasingly common to build ESMs out of components of independent provenance.

Dependencies across data from many models

 Model intercomparisons have become a primary research avenue for consensus and uncertainty estimates of anthropogenic climate change. This plot is a composite across the entire AR4 archive.

 Model chaining: output from one model used as forcing for another "downstream".

GTOPO30 Topography (m) & GLCC Vegetation

NX=155 NY=130 ds=50km CLAT=47.5 CLON=-97 Mercator

Grid metadata

To be of use by models as well as for interpreting model output, the standard must enable vector calculus and conservative regridding. The following aspects of a grid must be included in the specification:

- distances between gridpoints, to allow differential operations;
- angles of grid lines with respect to a reference, usually geographic East and North, to enable vector operations. One may also choose to include an arc type (e.g "great circle"), which specifies families of curves to follow while integrating a grid line along a surface.
- areas and volumes for integral operations. This is generally done
 by defining the boundaries of a grid cell represented by a point
 value. We will also consider fractional areas and volumes in the
 presence of a mask, which defines the sharing of cell between two
 or more components.

- Examples of grids in use in ESMs
 - Horizontal coordinates
 - Vertical coordinates
- Why a grid standard?
 - Model makers
 - Model data users
- Gridspec tools
 - Grid creation
 - Analysis and Visualization
 - Regridding
- New Directions

A command-line tool for creating a horizontal grid file for horizontal_grid_type = spectral_grid, regular_lonlat_grid, tripolar_grid, conformal_cubic_grid, gnomonic_cubic_grid, simple_cartesian_grid, e.g

- make_hgrid -grid_type regular_lonlat_grid -nlon 0,1,3,...360 -nlat -90,-88.2,... creates a lat-lon grid with non-uniform spacing.
- make_hgrid -grid_type conformal_cubic_grid -nlon 48 -nratio 2: created $48 \times 48 \times 6$ cubic grid.

A similar tool called make_vgrid for vertical grids.

Specifying mosaics

- make_solo_mosaic -num_tiles ntiles -tile_file gridtile
 will look for a set of ntiles tile gridspec netCDF files named gridtile#.nc and make a mosaic file mosaic.nc that specifies their linkages.
- make_topog -mosaic mosaic.nc -topog_type realistic -topog_file /archive/fms/mom4/input_data/OCCAM_p5degree.nc -topog_field TOPO specifies the topography/bathymetry.
- make_coupler_mosaic -atmos_mosaic atm_mosaic.nc -ocean_mosaic ocean_mosaic.nc -ocean_topog ocean_topog.nc [-land_mosaic land_mosaic.nc] [-sea_level sea_level] [-interp_method 1] [-mosaic_name mosaic_name] generates a coupler mosaic with land-sea mask, etc.

Analysis and visualization

http://www.gfdl.noaa.gov/~atw/ferret/cubed_sphere/

- Each tile in a mosaic is a self-contained standard netCDF file.
- Reliance on "soft" conventions to relate tiles.
- ferret is building gridspec-based mechanism.

Balaji (NOAA/GFDL) Gridspec 6 October 2009 13 / 19

fregrid is a command-line utility for regridding.

- fregrid -input_mosaic input_mosaic.nc nlon M -nlat N -input_file input_file -field_name temp,salt
- fregrid -input_mosaic input_mosaic.nc
 -output_mosaic output_mosaic.nc -input_file
 input_file -field_name temp,salt

fregrid is now prototyped as a "web service" (see demo later today!) We could potentially offer server-side regridding, allowing fields to be stored and manipulated on their native grids, but output data on a different grid if desired. (WGOMD recommendation for CMIP5).

Gridspec in CF/netCDF and in CMIP5

- Based on a collaboration between Ed Hartnett (Unidata) and Zhi Liang and Balaji (GFDL), there is now a Gridspec API.
- Every command-line tool (make_hgrid, fregrid, etc.) now has an API call.
- Gridspec API to be distributed with the nightly build (i.e bleeding edge) netCDF-4 library. Maintained by GFDL out of the Unidata CVS.
- CMIP5 allows native grid data (CMIP required lat-lon only).
 Groups supplying native grid data are encouraged to submit gridspec files: tools will be distributed alongside CMOR-2.
- ESG/Curator discovery engine will display select gridspec attributes (thanks to Sylvia Murphy, NCAR and Phil Bentley, UKMO).
- With the ferret web service and the gridspec files, we are working to deploy server-side regridding for CMIP5.

- Examples of grids in use in ESMs
 - Horizontal coordinates
 - Vertical coordinates
- Why a grid standard?
 - Model makers
 - Model data users
- Gridspec tools
 - Grid creation
 - Analysis and Visualization
 - Regridding
- Mew Directions

Polytopes

(Figure courtesy Alex Pletzer, Tech-X and the MoDAVE project.)

Unstructured grids: netCDF and API


```
netcdf deltares polv {
dimensions:
  nCell = 700; // The total number of Cells
 nCenter = 613 : // Number of tris + quads + hexa ('k+' marks)
  nNode = 706 : // Number of nodes
 nEdge = 2626; // Number of flux points (green dots)
 nConnect = 6; // Max number of nodes per element
variables:
 int grid1(nConnect, nCell) : // Mixed edge.center and node data
    grid1:cell_type = "mixed" ;
     grid1:cell type array = "cell types1" ; //cell type array
     grid1:standard name = "connectivity array"
     grid1:index_start = 0s ;
                              // 0 or 1
     grid1:coordinates node = "lon node lat node" ;
     grid1:coordinates center = "lon center lat center" :
    grid1:coordinates_edge = "lon_edge lat_edge" ;
    grid1:edges = "edge1";
    grid1:zones = "zone1" :
  float flux(nEdge) :
     flux:long_name = "Turbulent Eddy Viscosity For Momentum" ;
     flux:units = "m2 s-1" ;
     flux:grid = "grid1" :
     flux:grid_location = "edge" ;
     flux:coordinates = "lon edge lat edge" ;
 float pressure(nCenter) :
     pressure:long_name = "Pascals";
     pressure:units = "N m-2";
     pressure:grid = "grid1" :
     pressure:grid_location = "center" ;
     pressure:coordinates = "lon_cell'
```

18 / 19

The UGRID consortium (Rich Signell, David Stuebe, Bill Howe, Balaji, Schuchardt, Luettich, others) use an independent netCDF representation based on the VisTrails and GridField APIs.

Unstructured grids: Matlab screenshot

(Figure courtesy Rich Signell, USGS).